arithmetic unit - определение. Что такое arithmetic unit
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое arithmetic unit - определение

THE FIRST-ORDER THEORY OF THE NATURAL NUMBERS WITH ADDITION
Pressburger arithmetic; Presburger Arithmetic; Presberger arithmetic

Arithmetic logic unit         
  • The [[combinational logic]] circuitry of the [[74181]] integrated circuit, an early four-bit ALU
COMBINATIONAL DIGITAL CIRCUIT THAT PERFORMS ARITHMETIC AND BITWISE OPERATIONS ON BINARY-CODED INTEGER NUMBERS
Arithmetic and logic unit; Arithmetic-logic unit; Arithmetical and logical unit; Arithmetic Logic Unit; Arithmetic and logical unit; Arithmetic and logic structures; Computer arithmetic; Arithmetic and Logical Unit; Arithmetic logic unit\; Integer arithmetic operation; Integer operation; Arithmetic–logic unit; Arithmetic / logic unit; Multiple-precision arithmetic; Arithmetic logic units; Arithmetic logical unit
In computing, an arithmetic logic unit (ALU) is a combinational digital circuit that performs arithmetic and bitwise operations on integer binary numbers. This is in contrast to a floating-point unit (FPU), which operates on floating point numbers.
Arithmetic and Logic Unit         
  • The [[combinational logic]] circuitry of the [[74181]] integrated circuit, an early four-bit ALU
COMBINATIONAL DIGITAL CIRCUIT THAT PERFORMS ARITHMETIC AND BITWISE OPERATIONS ON BINARY-CODED INTEGER NUMBERS
Arithmetic and logic unit; Arithmetic-logic unit; Arithmetical and logical unit; Arithmetic Logic Unit; Arithmetic and logical unit; Arithmetic and logic structures; Computer arithmetic; Arithmetic and Logical Unit; Arithmetic logic unit\; Integer arithmetic operation; Integer operation; Arithmetic–logic unit; Arithmetic / logic unit; Multiple-precision arithmetic; Arithmetic logic units; Arithmetic logical unit
<processor> (ALU or "mill") The part of the {central processing unit} which performs operations such as addition, subtraction and multiplication of integers and bit-wise AND, OR, NOT, XOR and other Boolean operations. The CPU's instruction decode logic determines which particular operation the ALU should perform, the source of the operands and the destination of the result. The width in bits of the words which the ALU handles is usually the same as that quoted for the processor as a whole whereas its external busses may be narrower. Floating-point operations are usually done by a separate "{floating-point unit}". Some processors use the ALU for address calculations (e.g. incrementing the program counter), others have separate logic for this. (1995-03-24)
Arithmetic geometry         
  • The [[hyperelliptic curve]] defined by <math>y^2=x(x+1)(x-3)(x+2)(x-2)</math> has only finitely many [[rational point]]s (such as the points <math>(-2, 0)</math> and <math>(-1, 0)</math>) by [[Faltings's theorem]].
BRANCH OF ALGEBRAIC GEOMETRY FOCUSED ON PROBLEMS IN NUMBER THEORY
Arithmetical algebraic geometry; Arithmetic Geometry; Arithmetic algebraic geometry; Arithmetic Algebraic Geometry
In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties.

Википедия

Presburger arithmetic

Presburger arithmetic is the first-order theory of the natural numbers with addition, named in honor of Mojżesz Presburger, who introduced it in 1929. The signature of Presburger arithmetic contains only the addition operation and equality, omitting the multiplication operation entirely. The axioms include a schema of induction.

Presburger arithmetic is much weaker than Peano arithmetic, which includes both addition and multiplication operations. Unlike Peano arithmetic, Presburger arithmetic is a decidable theory. This means it is possible to algorithmically determine, for any sentence in the language of Presburger arithmetic, whether that sentence is provable from the axioms of Presburger arithmetic. The asymptotic running-time computational complexity of this algorithm is at least doubly exponential, however, as shown by Fischer & Rabin (1974).